1658

M.A./M.Sc. (Final) Examination, 2022 MATHEMATICS

Paper I (Optional)

Operations Research

Time Allowed: Three Hours

Maximum Marks: 100

Note: Non-Programmable Scientific Calculator is allowed in this paper.

This question paper contains three sections as under:

Section-A

Max. Marks-10

This section contains one compulsory question with 10 parts, having 2 parts from each unit, short answer in 20 words for each part. All questions carry equal marks.

https://www.uokonline.com

This section contains 10 questions, having 2 questions from each unit. Answer five questions (250 words each) selecting one question from each unit. All questions carry equal marks.

Section-C

Max. Marks-40

This section contains 4 descriptive type questions (questions may have sub-divisions) covering all units but not more than one question from each unit. Answer any two questions (500 words each). All questions carry equal marks.

Section A

- 1. (i) Define the Degeneracy in Simplex Method.
 - (ii) Write the matrix form of unsymmetric

 Primal-dual problem.
- (iii) Define the pure and mixed strategies.

 1658

 2 [Contd....
 https://www.uokonline.com

- (iv) What is integer programming? Explain briefly.
- (v) Define the 'principle of optimality' in dynamic programming.
- (vi) Write the difference between PERT and CPM.
- (vii) Describe the basic characteristics of the Inventory system.
- (viii) Write the KT conditions for a Minimization NLPP.
- (ix) Explain Wolfe's method in quadratic programming briefly.
- (x) What is Queue ? Give an example.

Section B

UNIT-I

2. Solve the following LPP, using simplex method :

Maximize :
$$Z = 6x_1 + 10x_2 + 8x_3$$

Subject to:
$$2x_1 + 3x_2 \le 80$$

$$2x_2 + 5x_3 \le 100$$

$$3x_1 + 2x_2 + 4x_3 \le 150$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Use duality to solve the following LPP:

Min. :
$$Z = 10x_1 + 6x_2 + 2x_3$$

Subject to
$$:-x_1 + x_2 + x_3 \ge 1$$

$$3x_1 + x_2 - x_3 \ge 2$$

and

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

UNIT-II

4. Solve the following mixed integer programming problem using Gomory's technique:

$$Maximize : X = x_1 + x_2$$

900fe (

[Contd....

٠.

[Contd....

3

1658

Subject to :
$$3x_1 + 2x_2 \le 5$$

$$x_2 \leq 2$$

and $x_1, x_2 \ge 0$ and x_1 an integer

5. Consider (two-person zero-sum) game matrix which represents payoff to the player A, find the optimal strategy, if any:

 \mathbf{B}

UNIT-III

6. A project consists of a series of tasks labelled

A, B,.....I, with the following relationship:

A < D, E; B, D < F; C < G; B < H;

F, G < I

(1) Construct the network diagram.

. 14

1658

5 [Contd_i.

https://www.uokonline.com

(2) Minimum time of completion of the project, when the time of completion of each tasks is as follows:

Task	A	В	С	D	E	F	G	H	I
Time (days)	23	8	20	16	24	18	19	4	10

7. Assuming that the expected time are normally distributed find the probability of meeting the schedule project date as for given network:

Activity	Estimated Durations (Days)						
(i, j).	Optimistic	Most	Pessimistic				
	(t ₀)	likely (t_m)	(t_p)				
(1, 2)	2	5	14				
(1, 3)	9	12	. 15				
(2, 4)	5	14	17				
(3, 4)	. 2	5	8				
(3, 5)	8	17	20				
(4, 5)	6	6	12				

1658

6

[Contd....

https://www.uokonline.com

Scheduled project completion time is 30 days.

Also find the time in which the project can be completed with a probability 0.90.

UNIT-IV

- 8. Calculate the EOQ and the total variable cost for the following:
 - Annual demand = 25 units; Unit price = Rs. 2.50; Order cost = Rs. 4.00; Storage cost = 1% per year Interest rate = 12% per year; obsolescene rate = 7% per year.
- Determine the relative maxima and minima (if any) of the function :

$$f(x_1 \ x_2 \ x_3) = x_1 + 2x_3 + x_3x_2 - x_1^2 - x_2^2 - x_3^2$$

UNIT-V

10. Solve the following quadratic programming problem: Beats to wolley

Minimize:

1658

$$f(x_1 \ x_2) = x_1^2 - x_1 x_2 + 2x_2^2 - x_1 - x_2$$
[Contd....

subject to:
$$2x_1 + x_2 \le 1$$

$$x_1 \ge 0, x_2 \ge 0$$

11. Customers arrive at a sales counter manned by a single person according to a Poisson process with a mean rate of 20 per hour. The time required to serve a customer has an exponential distribution with a mean of 100 seconds. Find the average waiting time of a customer.

Section C

12. Obtain optimal solution of LPP:

Max.
$$z = 3x_1 + 5x_2 + 4x_3$$

Subject to :
$$2x_1 + 3x_2 \le 8$$

$$2x_2 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$

and
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Find the permissible change in the value of C_3 and C_4 so that the same solution still remain optimal.

1658 8 [Contd....

https://www.uokonline.com

13. Solve by Dynamic programming techniques the problem:

Min Z =
$$y_1^2 + y_2^2 + y_3^2$$

Subject to :
$$y_1$$
 y_2 $y_3 = 27$

and

$$y_1$$
 y_2 $y_3 > 0$

14. Derive the optimal solution from the Kuhn-Tucker condition for the problem.

Minimize
$$Z = 2x_1 + 3x_2 - x_1^2 - 2x_2^2$$

Subject to :
$$x_{1+} 3x_{2} \le 6$$

$$5x_1 + 2x_2 \le 10$$

and

$$x_1 \geq 0, x_2 \geq 0$$

Write a short note on M|M|C models and their applications.